125^x+5=1/25^x

Simple and best practice solution for 125^x+5=1/25^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 125^x+5=1/25^x equation:



125^x+5=1/25^x
We move all terms to the left:
125^x+5-(1/25^x)=0
Domain of the equation: 25^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
125^x-1/25^x+5=0
We multiply all the terms by the denominator
125^x*25^x+5*25^x-1=0
Wy multiply elements
3125x^2+125x-1=0
a = 3125; b = 125; c = -1;
Δ = b2-4ac
Δ = 1252-4·3125·(-1)
Δ = 28125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28125}=\sqrt{5625*5}=\sqrt{5625}*\sqrt{5}=75\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(125)-75\sqrt{5}}{2*3125}=\frac{-125-75\sqrt{5}}{6250} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(125)+75\sqrt{5}}{2*3125}=\frac{-125+75\sqrt{5}}{6250} $

See similar equations:

| −9x=−3x^2+162 | | −9x=−3x2+162 | | 47t^2-9t=0 | | y=10-24 | | y=-3.29(-70)-10 | | y=10-22 | | y=10-21 | | 8-3x=-3x-8= | | -8y=-25 | | 10x-90=10x-80 | | u2–14u–15=0 | | X+x-10+45=180 | | x+12=9.6 | | (2x+18)=(3×+6)+24 | | -7-x=-24 | | 2n+8+15=8 | | 32=x/210 | | 5x2−2x−27=0 | | P=-60x^2+120x | | 4m-3=5* | | 10-2x+2x=3x-5+2x | | y=3+6100 | | y=3+69 | | 238=k(19) | | y=3+68 | | 238=k(17) | | 2a-21.8=a-2.5=a+2.2=21.5 | | 5x+4=16-4 | | 37+x+3x+51=180 | | y=3+67 | | 15-64=y | | 2a-21.8=a-2.5=a+2.2 |

Equations solver categories